රදර්ෆඩ් ඉදිරිපත් කළ මූලික පරමාණුක ආකෘතිය වන දැඩි ලෙස ධනාරෝපිත න්යෂ්ටිය වටා ඇති ලිහිල්ව ඇසිරුණ ඍණාරෝපිත ඉලෙක්ට්රෝණ වලින් සමන්විත පරමාණුක ආකෘතිය ඔබට මතක ඇති. මේ ආකෘතියට රදර්ෆඩ්ගේ ග්රහ ආකෘතිය කියා කියනවා. ඒ කියන්නේ න්යෂ්ඨිය වටා ඉලෙක්ට්රෝණ සූර්යයා වටා ග්රහලෝක භ්රමණය වන සේ භ්රමණය වන බවයි. නමුත් සංකීර්ණ යාන්ත්ර විද්යාවට අනුව මෙසේ ඉලෙක්ට්රෝණ භ්රමණය වීමේදී ශක්තිය පිට කරන බැවින් අවසානයේ න්යෂ්ඨියට කඩා වැටීම සිදු විය යුතුව තිබෙන නමුත්, එය එසේ නොවීම සැමට ප්රශ්නයක් වුනා. එසේම මෙම ග්රහ ආකෘතියට අනුව මෙසේ න්යෂ්ඨියට කඩා වැටෙන ඉලෙක්ට්රෝණ න්යෂ්ඨියට ආසන්නයේදී ඉතා තදින් භ්රමණය වීම නිසා පිටකෙරෙන ශක්තිය විද්යුත් චුම්භක විකිරණ ලෙස පිටවිය යුතුයි. නමුත් සෑමවිටම එසේ පිට වීමක් සිදු වන්නේ නැහැ. ඒ වගේම මෙසේ ශක්තිය පිටවීමක් සිදුවෙනවා කියන්නේ ස්වභාවයේ ඇති සෑම මූලද්රව්යයක්ම අස්ථායී කියන එකයි. මෙවැනි කරුණු නිසා රදර්ෆඩ්ගේ ආකෘතිය වෙනස් විය යුතුබව නීල්ස් බෝර් කල්පනා කළා. ඒ අනුව බෝර් ආකෘතිය (බෝර් වාදය) ඉදිරිපත් වුනා.
[caption id="attachment_362" align="aligncenter" width="120" caption="Niels Bohr - නීල්ස් බොර්"]

ඒ අනුව 1913 දී ඔහු සිය ආකෘතිය ඉදිරිපත් කළා. ඔහුට අනුව ඉලෙක්ට්රෝණ හැසිරිය හැක්කේ එක්තරා නීති කිහිපයකට අනුකූලවයි. එසේම මේ ආකෘතිය ඔහු ඉදිරිපත් කළේ හයිඩ්රජන් පරමාණුවට අදාලව පමණක් බව හොඳින් මතක තබා ගත යුතුයි. පසුව ඔහු වෙනත් පරමාණු වලට ද අදාල වන ලෙස මෙය වෙනස් කළද, මෙම ආකෘතිය ඉදිරිපත් කළේ හයිඩ්රජන් පරමාණුවට අදාලව පමණි.
[caption id="attachment_361" align="aligncenter" width="260" caption="Bohr Model of the Atom - ඉලෙක්ටෝන පැනීම නිසා ශක්තිය පීට වීම"]

- ඉලෙක්ට්රෝණ ගමන් කළ හැක්කේ න්යෂ්ඨියෙන් වෙන්ව පිහිටි, අනන්ය වූ ශක්තියක් ඇති කවචයන් හි පමණි.
- න්යෂ්ඨිය වටා වූ කවච තුළ ඉලෙක්ට්රෝණ ගමන් කරයි.
- මේ ඉලෙක්ට්රෝණ නියත ශක්තියක් ඇති ශක්ති මටිටම්වල ඇත.
- කවචයක් තුළ ඉලෙක්ට්රෝණ චලනයේදී ශක්තිය පිට නොකරයි.
- ඒවා ශක්තිය උරාගැනීම හෝ පිටකළ හැක්කේ එක් කවචයක සිට අනෙක් කවචයට “පැනීමකදී“පමණි.
- මෙසේ පිටවන ශක්තියේ සංඛ්යාතය ප්ලාන්ක් සමීකරණයේ කියැවෙන ආකාරයට ගණනය කළ හැක.
මෙහි h යනු ප්ලාන්ක් නියතයයි, එය h = 6.626068 x 10-34 Js වේ
- මෙසේ කවචයන් හිදී පිටවන විකිරණවල සංඛ්යාතය එය පිටකෙරෙන කාලයට ප්රතිලෝමව සමානුපාතික වේ.
බෝර් ආකෘතියේ වැදගත්කම වන්නේ එය උසස් භෞතික විද්යාව සහ යාන්ත්රවිද්යාවට (Classical Physics and classical mechanics) අනුකූල වන්නේ ඒවා ක්වොන්ටම් යාන්ත්ර විද්යාත්මක නීති මඟින් සීමා වූ විට පමණක් වීමයි. උදාහරණයක් ලෙස තෙවැනි නියමයේ කියැවෙන කවච සහ ඒවාට අදාල ශක්තීන් ගණනය කිරීම ක්වොන්ටම් යාන්ත්රවිද්යාව උපයෝගී කරගෙන සිදු කර ඇත.
මෙහිදී කවච දෙකක් අතර ඉලෙක්ට්රෝණ පැනීම සඳහා ඉලෙක්ට්රෝණය පවතින කවචය සහ එය අවසානයේ නතර වන කවචය ලෙස කවච දෙකක් සම්බන්ධ වන නිසා මේ කවච දෙක අතර ශක්ති වෙනස ගණනය කිරීමේදී ක්වොන්ටම් යාන්ත්රවිද්යාව උපයෝගී කරගෙන ඉලෙක්ට්රෝණයේ කෝණික ප්රවේගය (Angular Momentum, L) යම් ස්ථාවර ඒකකයක පූර්ණ සංඛ්යාත්මක ගුණාකාරයක් (integer of a fixed unit) ලෙස මෙසේ සීමා කර ගණනය කර ඇත.
මෙහි n = 1,2,3,…… විය හැකි අතර එය ප්රධාන/මූලික ක්වොන්ටම් අංකය ලෙස හැඳින්වේ. එසේම n=1 වන විට h/2π හි ලැබිය හැකි කුඩාම අගය වන 0.0539 nm (නැනෝමීටර) අගය බෝර් අරය (Bohr Radius) ලෙස හඳුන්වනු ලැබේ.ඉලෙක්ට්රෝණයක් කුචාම කවචයේ ඇතිවිට, එය ප්රෝටෝනයට ඊට වඩා ළඟින් පිහිටිය නොහැක. එනම් හයිඩ්රජන් සහ හයිඩ්රජන් වැනි පරමාණු සඳහා (He+, Li2+) ප්රෝටෝනයක් සහ ඉලෙක්ට්රෝණයක් වෙන්ව පිහිටිය හැකි කුඩාම දුර 0.0539 nm කි.
රිඩ්බර්ග් සූත්රය (Rydberg Formula)
බෝර් ආකෘතියට පෙර ප්රත්යක්ෂ ලෙස දැන සිටි රිඩ්බර්ග් සූත්රය මගින් බෝර් ආකෘතිය ඉදිරිපත් කළ පසු එහි දැක්වූ කවච අතර ඉලෙක්ට්රෝණ පැනීම විස්තර කරනු ලැබුවා. එසේම මෙහි අඩංගු රිඩ්බර්ග් නියතයෙහි අගය බෝර් සූත්රයක් භාවිතා කර ස්වායක්තව ගණනය කළ හැකියි. නමුත් දැන් එය ප්ලාන්ක් නියතය වැනි මූලික නියත භාවිතා කර නිවැරදිව ගණනය කළ හැකි අතර මේ රිඩ්බර්ග් නියතය ලොව ඇති වඩාත්ම නිවැරදිව මිණුම් කළ භෞතික නියතය වෙනවා.
ඉලෙක්ට්රෝණයක් චලනය වීමේ දී, එය තිබූ ශක්ති මට්ටමෙන් ඉහළ වූ මට්ටමකට පැනීමක් වෙනවා. එය නැවත කළින් තිබූ ශක්ති මට්ටමට පැමිණීමේදී ෆෝටොනයක් (Photon) පිටවෙනවා. මෙසේ පිටවන ෆෝටෝනය පිට කරන ශක්තියේ තරංග ආයාමය මෙසේ ගණනය කළ හැකියි.
nf = අවසන් (පහළ) ශක්ති මට්ටම (n = 1, 2, 3,…)
ni = මුල් (ඉහළ) ශක්ති මට්ටම (n = 1, 2, 3,…)
RE = රිඩ්බර්ග් නියතය = 1.097 x 107 m-1
එසේම ශක්තිය,


රිඩ්බර්ග් නියතයේ විහිදුම තරමක් සංකීර්ණ නියතයන්ගේ එකතුවකි. එසේ වුවත්, යමෙකුට එය දැනගැනීමට අවශ්ය නම්, විමසන්න, අවශ්ය නම් ඊලඟ කොටසින් එය විස්තර කරන්නම්.
By Dr. Piyal Ariyannada
Tagged as
Atom Bohr Model Chemistry Materials Chemistry Science ඉලෙක්ට්රෝන නීල් බෝර් න්යෂ්ටිය පදාර්ථය පරමාණුව රසායන විද්යාව විද්යාවAbout the Author

Every Action has a Reaction. එසේ නම් ඔබේ ප්රතික්රියාවත් සටහන් කර යන්න.
Popular Posts
-
භෞතික විද්යාවේදී සාපේක්ෂ චලිතය හා සම්බන්ධ සිද්ධාන්ත මෙහිදී අපි අධ්යයනය කරමු. භෞතික වස්තූන්ගේ අවකාශය මෙහිදී ප්රධාන වශයෙන් කොටස් දෙකකට බෙද...
-
මාන විශ්ලේෂණය (dimensional analysis) යනු විද්යාවේදී බහුලව ප්රයෝජනයට ගැනෙන එක්තරා ගණිතමය ක්රමවේදයක්. විශේෂයෙන් සමීකරණ ගොඩනෑගීමට බෙහෙවින් උ...
-
සාමාන්ය භාවිතයන් වලදී මෙන් නොව පරීක්ෂණ වලදී ලබා ගත යුතු පාඨාංක හැකිතාත් නිවැරදි විය යුතුය. සාමාන්ය අඩි කෝදුවක ඇති පරිමාණයේ රේඛා දෙකක් අතර ...
-
ජේ. ජේ. තොම්සන්ගේ ප්ලම් පුඩින් ආකෘතිය - ක්රි.ව.1904 පරමාණුව පිළිබඳ පැහැදිලි ආකෘතියක් මුලින්ම ඉදිරිපත් කළේ 1904 දි ජේ. ජේ. තොම්සන් විසින්. ...
-
ලෝහ කැටායන මිශ්රණයක් දී ඇති විට එම එක් එක් කැටායනය හඳුනා ගන්නා ආකාරය අපි මෙහිදී සලකා බලමු. මේ සඳහා s, p හා d ගොනු වලට අයත් ලෝහ කැටායන අඩං...
-
කලින් ලිපියේ අපි මූලික ඒකක යොදාගෙන ව්යුත්පන්න භෞතික රාශීන් සඳහා ඒකක ලිව්වා. ඒ අනුව බලය නැමැති රාශියෙ හි ඒකකය විදියට අපට kgms -2 යන පිළිතු...
-
රදර්ෆඩ් ඉදිරිපත් කළ මූලික පරමාණුක ආකෘතිය වන දැඩි ලෙස ධනාරෝපිත න්යෂ්ටිය වටා ඇති ලිහිල්ව ඇසිරුණ ඍණාරෝපිත ඉලෙක්ට්රෝණ වලින් සමන්විත පරමාණුක ආක...
-
සිංහල බසින් නම් චන්ද්රිකාව යනු පරිවාර ග්රහයා යන අර්ථයයි. නමුත් ඒ ස්වාභාවික චන්ද්රිකා වේ. මීට අවුරුදු ගණනකට පෙර කෘත්රිම චන්ද්රිකා කරළි...
-
දිග යනු එදිනෙදා ජීවිතයේදී බහුලවම භාවිතා කරන භෞතික රාශීයක්. දිග සඳහා අවස්ථානුකූලව දිග, පළල දුර හා උස යන යෙදුම් භාවිතා කරයි. දිග පරාසය ගණිතම...
-
මේ පදාර්ථ සියල්ලේ කුඩාම ඒකකය වන්නේ පරමාණුවයි. පරමාණුව යනු පරම-අණුව යන්න බිඳීමෙන් සෑදුනක්. එනම්, තවත් නොබිඳිය හැකි කුඩාම කොටස යන්නයි. ජෝන් ඩෝ...
0 = ප්රතිචාර ගණන